Overview of Subsea Operations

Guyana Oil and Gas Association

Brian McShane
INTECSEA
Senior Vice President, Americas
January 2017
Guyana Oil and Gas Association Inc.
Invites You To
The Second Public Lecture

“Overview of Subsea Operations”

Presented By:
MR. BRIAN MCSHANE
Senior Vice President of the Americas Region, INTECSEA

Wednesday, January 18, 2017 at 18:30hrs.
Herdmanston Lodge,
65 Peter Rose & Anira Streets,
Queenstown, Georgetown
DISCLAIMER

This presentation has been prepared by a representative of WorleyParsons.

The presentation contains the professional and personal opinions of the presenter, which are given in good faith. As such, opinions presented herein may not always necessarily reflect the position of WorleyParsons as a whole, its officers or executive.

Any forward-looking statements included in this presentation will involve subjective judgment and analysis and are subject to uncertainties, risks and contingencies—many of which are outside the control of, and may be unknown to, WorleyParsons.

WorleyParsons and all associated entities and representatives make no representation or warranty as to the accuracy, reliability or completeness of information in this document and do not take responsibility for updating any information or correcting any error or omission that may become apparent after this document has been issued.

To the extent permitted by law, WorleyParsons and its officers, employees, related bodies and agents disclaim all liability—direct, indirect or consequential (and whether or not arising out of the negligence, default or lack of care of WorleyParsons and/or any of its agents)—for any loss or damage suffered by a recipient or other persons arising out of, or in connection with, any use or reliance on this presentation or information.
Overview

- Introduction and overview of deepwater subsea projects
- World tour of offshore developments
- Subsea Developments and Key Components
- Delivery Challenges
Introduction and Overview of Deepwater Subsea Projects
Brief History – Offshore Oil and Gas

The Offshore Industry is much older than you might think

- 1891 – First offshore well
 - On Grand Lake in Ohio in 10-ft of water
- 1896 – First well in salt water
 - Santa Barbara Channel in California
 - Drilled on piers built out to the rig
- 1920s – Drilling from concrete platforms
 - Lake Maracaibo in Venezuela
- 1930s – First mobile steel drilling barges
 - Developed by Texas Co. (now Chevron) on Gulf of Mexico coast
- 1942 - Reeled pipelines were installed during World War II
 - This project was known as the PLUTO project (Pipe-Line Under The Ocean).
- 1947 – First commercial oil discovery drilled out of sight of land
 - Ship Shoal Block 32, 10-mi from Louisiana coast
 - Drilled by Kerr McGee (now Anadarko) in ~18-ft of water
Industry Benchmarks
Subsea Tieback Distance

INTECSEA Deep-Offset Projects

Water Depth (ft)

Tieback Distance (miles)
Industry Benchmarks
Subsea Tie-back Distance

World Record Subsea Tiebacks • Sanctioned, Installed, Operating or Future Tiebacks (Water Depth vs. Tieback Distance) • As of March 2012

Source: Offshore Magazine Poster No. 98, 2012 Deepwater Solutions & Records for Concept Selection, Issued May 2012
World Tour of Offshore Developments
Canyon Express
Gulf of Mexico

Description
- 2 x 50 mile x 12-inch Multi-Phase Flowlines
- In-Line Subsea Well Tie-In Sleds
- Subsea Multi-Phase Flow Meters

Project Highlights
- First Multi-Field/Multi-Operator Subsea Development
- Challenging Flow Assurance and Operability Issues
- Record 7,280 ft Water Depth and Complex Seafloor Topography
- Use of Fiber Optic in Control System Umbilical
Shenzi
Gulf of Mexico

Description
- MC Blocks 609, 610, 653, 654
- 4,400 ft water depth
- 100,000 bopd & 50 MMSCFD
- Purpose-built TLP

Project Highlights
- Shenzi subsea wells tied back to purpose-built TLP
- Development has implemented several additional subsea reservoirs and expansions leveraging standardize equipment
Stampede
Gulf of Mexico

Description:

• 40,000 bopd, 15 MMSCFD
• 30,000 bpd water injection
• 6 subsea producers, 4 injectors
• 3,400 ft water depth in GOM

Project Highlights:

• High Pressure /High Temperature subsea system
• Collaborative development approach
Description:
- FPSO Turret moored
- Gas Export Pipeline to shore
- Onshore Receiving Facilities

Project Highlights
- First Arctic class hull
- Challenging Environment
- Remote location
- Largest gas processing facility
Scarab/Saffron Mediterranean Sea

Description
- 2 Subsea Manifolds with 8 Subsea Wells
- 2 x 13 mile x 20-inch Infield Flowlines
- Multi-Flowline Subsea Tie-In Manifold
- 43 mile x 24-inch and 36-inch Flowlines

Project Highlights
- First Deepwater Mediterranean Subsea Development (2,800 ft)
- Challenging Flow Assurance and Operability Issues
- First Production (400 MMSCFD) January 2003 (600 MMSCFD Peak)
- At time of construction was the World’s Longest Producing Tieback and Delivering 2,000 MMSCFD
Project Highlights

- Longest Subsea Tieback in the world – 147 km
- High Capacity subsea development

Description

- Long Distance Subsea Tieback gas development
- Capacity approximately 1 Bcfd
- Water Depth 1680 m
- Dual 16-inch Gas Pipeline
Project Description:

- Currently in preFEED
- 2500 Meters Water Depth
- 10 KSI Seafloor Equipment
- Multi-Phase Pumping
Description

- Major oil discovery offshore Ghana
- 80 (ultimate) subsea wells to floating production system
- Water depth 4500 feet

Project Highlights

- Project Delivery in 30 months
- Challenging subsea terrain
Description

- 5,400 ft water depth
- 38 wells
- 6 manifolds
- 80 km flowlines
- Insulated flexible production flowlines
- 2.3 MMBBL New Build FPSO producing 250,000 BOPD and 450 MMSCFD, TALM

Project Highlights

- Stand alone FPSO facility and complicated subsea development
- Gas export pipeline and connection to WAGS
- Advanced qualification of flexible pipe for size, depth and pressure
Liwan 3-1
South China Sea

Description
- Subsea gas field in 1,500 m water depth tied back 75 km to a new build shallow water processing platform in 200 m water depth in South China Sea
- Multiphase (gas & condensate) 30 inch marine pipeline from platform to shore (275 km)
- Marine sales gas pipelines (4) totaling 250 km with metering & regulating (M&R) stations

Project Highlights
- First deepwater development offshore China
- 80-km long tieback
- First use of gas recirculation (gas recycle) as part of primary operating condition
- Design condition includes designing for solitons
- Wet gas flowmeters integrated with subsea trees
Description:
- Water Depth: 1,400m
- Tie Back Distance: 15km
- 4 production drill centers & 4 water injection drill centers
- PIP Production Flowlines
- Production flowrate: 40,000 bpd
- Water Injection flowrate: 70,000 bpd
Project Description:
• Water depth of up to 1,350km, 160km north of Exmouth, WA
• Facility design flow rate – 325 MMscfd and includes gas/liquid separation, glycol regeneration, gas dehydration and gas/condensate export with supporting utilities/accommodation

Project Highlights:
• Cyclonic environment
• Deep Draft Semi Submersible
• Lazy Wave Risers
How do you get from here...
...to here?
Why subsea?

Geography
- Well locations are spread out and not supported by dry trees
- Lack of nearby processing/receiving facilities
- Small field in close proximity to existing platform

Safety
- Personnel risk to man a platform or perform maintenance is eliminated with a subsea option

Cost
- Capex – subsea developments are generally less expensive than topside alternatives
- Opex – subsea developments do not require regular maintenance like topside structures
Subsea field architectures are designed around these three main questions:

- How many wells are there?
- Where should the wells be?
- How do I bring them back to the facility?
Generic Subsea Options

Single well tieback
Well template/manifold
Manifold with cluster wells
Manifold with remote wells
Daisy chain

- 10" FLOWLINES
- 10" PLETS
- TREE
- INFIELD UMBILICAL
- (2) MANIFOLD WITH 10"
- UTA WITH FLYING LEADS
Key Subsea Components
Subsea Production System

Key Components

- Manifold
- Jumper
- PLEM Tree
- Umbilical
- UTA
- Flying Leads
- Jumper
- Control Pod
- Flowlines
Wellheads

- Support the BOP (Blowout Preventer) and seal the well during drilling
- Support and seal the subsea tree during production
- Support the tubing hanger for conventional subsea trees
- Act as a hanger for the casing strings in the well annulus
- Common Standard: 18 ¾ in x 15,000 psi
Subsea Trees

- Sits on top of the wellhead
- An assembly of valves to control the well flow

Different types of trees
- Vertical
- Horizontal
Manifolds

- Flowline Jumper Connection
- Structure
- Piping
- Foundation
- Well Jumper Connection
- Valve and Actuator
Jumpers

- Connects two subsea structures
- Can be made of rigid or flexible pipe
- Can include meters and sensors
- Vary in shape
Connectors

- Torus Hydraulic Connector (Vertical)
- MAX Mechanical Collet Connector (Vertical)
- Single or Twin Screw Clamp Connector
- KC4 Collet Connector

Vertical or Horizontal
Subsea Controls & Umbilicals

Controls
- Operate all subsea equipment – actuate valves, manage chemical distribution, monitor all data
- Managed from the host facility

Umbilicals
- Supply hydraulic fluid to the subsea controls
- Transmit power and signal to the subsea controls
- Supply downhole chemicals to the well via a host facility
System Components

- Subsea Control Modules
- Tree Mounted Controls
- E/H SCM
- SEM
- FL Deployment Frame
- Hydraulic Distribution
- Test Equipment
- Electric Distribution
- Electronics
- Sand detector
- Meters
- Umbilical
- Daisy Chain UTH
- Sensor
- Common Subsea Control System Components
Delivery Challenges

- Weather
- Depth
- Tie-back distance
- Increasing water-cut
- Pressure decline
Projects face delivery challenges in all phases of the program. These include:

- Development arena – environment, location, reservoir fluids
- Engineering - Selection of Key system solutions – flowlines, risers, subsea layout, floating system
- Procurement
- Fabrication
- Installation
Weather Prediction

Weather fronts and storms in global model (source: US NCAR Annual Report)

Regional climate prediction program (source: US NCAR Annual Report)

Better regional weather prediction technologies enhance project feasibility and solutions

Eyes in sky monitor, weather prediction (source: NASA/Goddard Space Flight Center)

Remote sensing (source: NASA/Goddard Space Flight Center Scientific Visualization Studio)
Industry is developing floating facilities for deepwater and larger facilities. Deployment of FPU facilities in deepwater enable accessing difficult reservoirs.

<table>
<thead>
<tr>
<th></th>
<th>Shell Olympus TLP</th>
<th>Anadarko Lucius Spar</th>
<th>Chevron Big Foot TLP</th>
<th>Chevron Jack St. Malo SEMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (m)</td>
<td>944</td>
<td>2,164</td>
<td>1,585</td>
<td>2,134</td>
</tr>
<tr>
<td>One of the largest</td>
<td>TLPs</td>
<td>Second in terms of</td>
<td>The Largest TLP &</td>
<td>One of the largest Semis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>water-depth</td>
<td>Record Water-depth</td>
<td></td>
</tr>
</tbody>
</table>

- Shell Olympus TLP
- Anadarko Lucius Spar
- Chevron Big Foot TLP
- Chevron Jack St. Malo SEMI
Flow Assurance:
- Steady State Analysis
- Transient Analysis
- Reservoir fluid characterization
- Operability philosophy and strategy
- Production optimization and stability
- Corrosion/erosion analysis

Challenges:
- Flowline sizing for throughput and all operating scenario
- Slugging
- Hydrates
- Corrosion
- Liquid holdup
- Wax, Emulsions, Scale, Asphaltenes, Sand
Riser Systems

Riser Systems:
- Steel Catenary Risers
- Lazy Wave Steel Catenary Risers
- Flexible Risers
- Hybrid Risers
Procurement

Bid / Strategy Phase
- Scope, Spec and Drawings
- Contracting Strategy
- Supply/Delivery; Risk Assessment
- RFQ’s for Equipment, Vendor Selection and Order Placement; Technical Qualification

Manufacturing Phase
- Kick-off Meeting
- Documentation Review
- HSSE and QA/QC
- Inspection and Test Plan
- Maintain Schedule and Budget
- Daily Reports from Inspector
- FAT, DQT and SIT
- Production Performance
- Non-conformance Issues and Resolution
- Material Certifications

Delivery Phase
- Release for Shipment
- Shipping
- Data Book Review
- Verify Invoicing
- Close-Out
- Equipment Delivery
- Handover of Ownership
Installation

- **Design Support**
 - Constructability
 - Cost Estimating
 - Risk Assessment

- **Construction Planning**
 - Bid Strategy
 - ITB and Evaluation
 - Procedure Reviews

- **Construction Execution**
 - Material Testing
 - Equipment Audits
 - Site Safety Plans
 - Field Execution and Oversight
 - Management of Change
 - Lessons Learned